Math Logic: Model Theory & Computability Lecture 02

Reall. An many operation on a set
$$S$$
 is just a function $S^* \rightarrow S$.
Similarly, an many relation on a set S is just a subset of S^* .
Also, for $n \in \mathbb{N} := \{0, 1, 2, ...\}, S^* := S \times S \times ... \times S$ if $n \ge 1$ and $S^* := \{0\}$.
For a signature $\sigma := \{C, \delta, \delta, a\}$, let const(σ) := C , $\operatorname{Euc}(\sigma) := \mathcal{F}$, $\operatorname{Rel}(\sigma) := \mathcal{R}$, $a_{\sigma} := a$.
Det. Let σ be a signature. A σ -stracture is a pair $S := \{S, i\}$, there S is
a set, celled the underlying set or universe of S , and i is a map assigning
to the symbols in σ their interpretation in S' more precisely.
 σ for each $c \in \operatorname{Const}(\sigma)$, $i(c) \in S$.
 σ for each $c \in \operatorname{Const}(\sigma)$, $i(t)$ is an $a_r(t)$ -arg operation on S .
We call this i an interpretation of σ $i = S$.
We call this i an interpretation of σ $i = S$.
 i to avoid σ signature for graphs is $\sigma_{ph} := (\phi, \phi, f, E\}$, $(E \mapsto 2)$, i.e.
 i actains just one binary relation of σ $i = S$.
 i where E is $f_{rel}(\sigma)$, $f_{rel}(F)$ instead and then say "where E is
a binary velation symbol?
Now let's give an example of a $\sigma_{ph} = \{1, 2, 3, 4\}$ and
 G .
 G . This is equin unitaritive matchion, so we write
 $G := (V, E^{S})$. Then E^{S} is the interpretation of E .
 G is the second of F is F in F .

(b) The signature for groups is
$$G_{p} := (\pm 12, \pm 0, (5^{-1}), \emptyset, (-1))$$
.
Instead we write $G_{p} := (\pm -, (5^{-1}), \text{there } \pm \text{ is a cost. symb.}, is a binary function symb., and $(5^{-1} \text{ is a unary }(\text{i.e. asity}=1) \text{ fonc. symbol.}$
Now we give examples of G_{p} -structures:
 $O = \mathbb{Z} := (\mathbb{Z}, \pm^{n}, \pm^{n}, (5^{n}\pm)), \text{ there } \pm^{n} := 0, \pm^{n} := \text{addition}, (5^{-1}\pm -(1) := (\times 1) \times -\times).$ This G_{sp} -structure is actually a group.
 $O = \mathbb{Z} := (\mathbb{Z}, \pm^{n}, \pm^{n}, (5^{-1}\pm)), \text{ there } \pm^{n} := 0, \pm^{n} := ((\times, g) \mapsto ((\times 1)^{1/2})^{1/2} \cdot \mathbb{R})$
 $(1)^{-1/2} := (\times 1)^{-1/2} (1)^{-1/2}), \text{ there } \pm^{n} := \frac{1}{2} := ((\times, g) \mapsto ((\times 1)^{1/2})^{1/2} \cdot \mathbb{R})$
 $(1)^{-1/2} := (\times 1)^{-1/2} (1)^{-1/2}), \text{ there } \pm^{n} := ((\times, g) \mapsto ((\times 1)^{1/2})^{1/2} \cdot \mathbb{R})$
 $(1)^{-1/2} := (\times 1)^{-1/2} (1)^{-1/2}), \text{ there } \pm^{m} := ((\times, g) \mapsto ((\times 1)^{1/2})^{1/2} \cdot \mathbb{R})$
 $(1)^{-1/2} := (\mathbb{R} \setminus 1)^{-1/2} (1)^{-1/2} := \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R}$
 $O = \frac{M}{12} := (\mathbb{R} \setminus 1)^{-1/2} (1)^{-1/2} := \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (n \vee e^{-5/6})^{-1/2} (1)^{-1/2} \cdot \mathbb{R} \text{ matrix } (1)^{-1/2}$$

$$O \quad \mathbb{R} := (\mathbb{R} \quad 0^{\mathbb{L}} \quad 1^{\mathbb{R}} \quad +^{\mathbb{R}} \quad -(1^{\mathbb{R}} \quad , \stackrel{\mathbb{L}}{2}) \quad \text{with standard interpretations is a Grag-standom that is a field.}$$

Ministria above. It's two long and agly to write $M := (Gim(\mathbb{R}^{+}), 1^{\frac{M}{2}}, \stackrel{\mathbb{L}}{2}, (1^{\frac{M}{2}})^{\frac{M}{2}})$
so instead we write $M := (Gim(\mathbb{R}^{+}), 1, \cdot, \cdot, (1^{-1}))$ and have specify how each symbol is interpreted, i.e. allotine $1^{\frac{M}{2}}, \stackrel{\mathbb{L}}{=}, (1^{\frac{M}{2}})^{\frac{M}{2}}$.

Substructives.

Recall For a function $f: X \rightarrow Y$ and a subset $X_0 \leq X$, we define the verticities of P to X_0 as the function $f!_X : X_1 \rightarrow Y$ given by $x \mapsto f(x)$.

Bd. Uf $A := (A, \sigma)$ and $B := (B, \sigma)$ be two σ -standards, for a signature P .

We say that A is a substructure of B , and write $A \leq B$, if (i) A $\leq B$.

(ii) For each $f \in Fonc(\sigma)$ of arity u , $f^{A} = f^{\frac{N}{2}}|_{A^{n-1}}$. (This is particular implies that $f^{\frac{N}{2}}(A^{\frac{N}{2}}) \leq A$.)

(iv) For each $R \in Rel(0)$ of arity u , $R^{A} = R^{\frac{N}{2}} \cap A^{\frac{N}{2}}$.

Example. (a) For a graph $\underline{C} := (V, E^{\frac{N}{2}})$, and all subgraphs (in the sense of graph theory of g if $E^{\frac{N}{2}} = E^{\frac{N}{2}} \cap U^{\frac{N}{2}}$.

Example. (a) For a graph $\underline{C} := (V, E^{\frac{N}{2}})$, and all subgraphs (in the sense of f graph theory of g if $E^{\frac{N}{2}} = E^{\frac{N}{2}} \cap U^{\frac{N}{2}}$.

 H is a substructure of G if $E^{\frac{N}{2}} = E^{\frac{N}{2}} \cap U^{\frac{N}{2}}$. Substructure $f^{\frac{N}{2}}$ as the induced subgraph or U .

 $\underbrace{W = V_{1} = U}_{\frac{N}{2}} = \underbrace{W = U}_{\frac{N}{2}} = \underbrace{W$

(b) For a Typ-structure
$$\Gamma := (\Gamma, 1, \cdot, (1^{-r}))$$
 if Γ is a group Mun
its substructures are precisely its subgroups.

(c) let $r_{syp} := (\cdot)$ be signature for seni-groups and let $Z := (Z, \cdot Z)$, then Z is defined as the usual addition on Z. The following are interactions øf 7: o (IN, . ₹), i.e. IN with what addition. o (47,8,9,...}, ∘[₹]) o (\0}, •₹) o (m IN, .≥) Mer m ∈ Z. $O((1..., -7, -6, -5), ..., -\frac{2}{2})$ $\begin{array}{c} O \left(dN + k \cdot d \right)^{\frac{2}{2}}, & \text{ these } d \in \mathbb{Z}, & k \geq 0. \\ O \left(4N + k \cdot d \right)^{-\frac{2}{2}}, & \text{ these } d \in \mathbb{Z}, & k \geq 0 \\ O \left(dR \right)^{\frac{2}{2}}, & d \in \mathbb{Z}. \end{array}$